Auto-annots Survey

## 1. Deep extreme cut: From extreme points to object segmentation, Kevis et al_ CVPR2018 ##

   (1) paper and code
    paper link: https://arxiv.org/abs/1711.09081
    code(pytorch): https://github.com/scaelles/DEXTR-PyTorch
    (website) [http://people.ee.ethz.ch/~cvlsegmentation/dextr/]

   (2) problem range
    target:  single image
testing datasets: COCO, Pascal VOC, GrabCut, Davis 2016, Davis 2017

(3) architecture
    (inference) input: four extreme points(left-most, right-most, top and bottom)
    (refinement)input: the above four points+   one extra point

   (4)Implement details:
   Balance loss(cross-entropy)

   (5) results:
   1> Obtaining state-of-the-art results in all scenarios.
   2> Reducing labeling costs by a factor of 10.


##================================================== ##
## 2. Annotating Object Instances with a Polygon-RNN_Liuis et al_ CVPR 2017 ##
(1) paper and code:
paper link: https://arxiv.org/abs/1704.05548

(2) problem range:
1> support type:  instance segmentation

2> dataset:
Training and validation: Cityscapes(training set)
Inference: Cityscapes(validation set)
Generalization: KITTI

 3> input: first vertix,  two previsous vertixes
      output: all the vertixes that form a cicle(for a specific object instance)

(3)workflow

(4) implement details:
1> Architecture: CNN+LSTM
CNN: serving as an image feature extractor
RNN: decoding one polygon vertex at a time

2> backbone: VGG16

(5) results:
 1> achieving demanding accuracy: very few clicks
2> speed-up factor: 4.74 (compare with human annotator)
   
(6) advantages and limitations:

1>advantage:
interactive(can be refined): compare with the CNN based segmentation method(     including DeepMask and SharpMask)

 2> disadvantages:
The performance for the large objects are not good as DeepMask and SharpMask( may due to the different backbone)
It ask more vertixes to form a circle for the instance( memory consuming)

##================================================== ##
## 3. Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++_David Acuna et al_CVPR2018 ##

   (1) paper and code:
   paper link: https://arxiv.org/abs/1803.09693
   (org) code(tensorflow): https://github.com/davidjesusacu/polyrnn-pp
   web page: http://www.cs.toronto.edu/polyrnn/

   (2) problem range:
   same with 2. polygonrcnn(above)

   (3)  workflow:



   (4) implement details:
    1> design a new CNN encoder-architecture
    2> training the model with Reinforcement Learning
    3> increase the output resolution using a Graph Neural Network, allowing the model to annote the high-resolution objects in image.

   (5) results:
    1> accuracy:  improve 10% mean IOU compared with polygon_rnn
    2> click:  50% fewer clicks by annotators compared with polygon_rnn

   (6) limitations:
    1> can't handle objects that contain holes
    2> can't hanlde the occluded cases for multi-objects.

##============================================== ##
## 4. One-Shot Video Object Segmentation_ Sergi Caelles et al_CVPR2017 ##
  (1) paper and code:
   1>paper link: https://arxiv.org/abs/1611.05198
   2>code(caffe, pytorch, tensorflow): https://github.com/scaelles/OSVOS-TensorFlow

  (2) problem range: 
input: the gt_segmentation of the first frame and the video sequence.
   output: Segment the rest of the video sequence.

  (3) workflow:
  Steps:
  s1: Pre-trained image-feture(for classification) on image-net
  s2: fine-tuning object-segmentation on davis dataset
s3: over-fitting a specific object in the first frame of a video sequence


  (4) implement details

  (5) results

 ##=============================================== ##
## 5. DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks ##

(1)paper and code:
paper link: https://arxiv.org/abs/1605.07866
idea: Combining CNN and GrabCut


conclusion:   Try PolygonRNN++  on Cityscapes first.
directions:  doing a temporal PolygonRNN++

##================================================= ##
BoxSup
DeepLab
Seg_papers link: https://github.com/handong1587/handong1587.github.io/blob/master/_posts/deep_learning/2015-10-09-segmentation.md







Comments

Popular posts from this blog

github accumulation

7. compile faster-r-cnn