COCO-pickle(dets)

##---------------------------------------------------------------------------------------------------------------##
dets: ( len(dets)=81, type: <class 'list'>  )
dets[categaroies][image_ids]

type(dets[1][0])=<class 'numpy.ndarray'> or =<class 'list'>

if len(dets[i][j])>0:
   dets[i][j].shape=(n_dets, 5)   for each row, it's  x1, y1, x2, y2, score

##-------------------------------------------------------------------------------------------------------------- ##
det_im_ids: ( len(det_im_ids)=82783 , type: <class 'list'>)
[262118, 283985, 393193, ....... , 131067, 524286, 43645]

##---------------------------------------------------------------------------------------------------------------##
cat_ids: ( len(cat_ids)=81 , type: <class 'list'>)
 [-1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]


##--------------------------------------------------------------------------------------------------------------##
## example for creating <class 'list'>
numbers = [1, 2, 3]
result = isinstance(numbers, list)
print(numbers,'instance of list?', result)


##==========================roidb=====================================##
##--------------------------- im_info ---------------------------------------##
roidb = load_im_info(coco, path_to_images[name])
roidb.append({
'id': im_info['id'],
'width': im_info['width'],
'height': im_info['height'],
'filename': filename,
'flipped': False,
})

gt_roidb = load_annotations(coco, cat_id_to_class_ind)
return {
'id': im_info['id'],
'gt_boxes': boxes,
'gt_classes': classes,
'gt_crowd': crowd,
}

det_roidb = load_detections(coco, name, cfg.train.detector, cat_id_to_class_ind)
roidb.append({
'id': imid,
'dets': imdets,
'det_scores': scores,
'det_classes': cls,
})





Comments

Popular posts from this blog

github accumulation

7. compile faster-r-cnn