## 1. Deep extreme cut: From extreme points to object segmentation, Kevis et al_ CVPR2018 ## (1) paper and code paper link: https://arxiv.org/abs/1711.09081 code(pytorch): https://github.com/scaelles/DEXTR-PyTorch (website) [ http://people.ee.ethz.ch/~cvlsegmentation/dextr/ ] (2) problem range target: single image testing datasets: COCO, Pascal VOC, GrabCut, Davis 2016, Davis 2017 (3) architecture (inference) input: four extreme points(left-most, right-most, top and bottom) (refinement)input: the above four points+ one extra point (4)Implement details: Balance loss(cross-entropy) (5) results: 1> Obtaining state-of-the-art results in all scenarios. 2> Reducing labeling costs by a factor of 10. ##================================================== ## ## 2. Annot...